技術(shù)頻道

娓娓工業(yè)
您現(xiàn)在的位置: 中國傳動網(wǎng) > 技術(shù)頻道 > 應用方案 > 使用LabVIEW 與 NI FlexRIO實現(xiàn)基于FPGA的單原子反饋控制

使用LabVIEW 與 NI FlexRIO實現(xiàn)基于FPGA的單原子反饋控制

時間:2011-08-11 12:03:01來源:wangww

導語:?反饋是控制動態(tài)系統(tǒng)與單個光子相互作用的中性孤立原子——量子化電磁場的本征激發(fā)——被高反射性的腔式鏡面所環(huán)繞

  反饋是控制動態(tài)系統(tǒng)最強有力的技術(shù)之一。我們實驗室研究的系統(tǒng)含有一個單獨的,與單個光子相互作用的中性孤立原子——量子化電磁場的本征激發(fā)——被高反射性的腔式鏡面所環(huán)繞(如圖1和2)。使用這套系統(tǒng),我們可以研究光與物質(zhì)相互作用的基本量子性質(zhì),要實現(xiàn)這一點必須將原子限制在腔鏡的中央。然而,固有的加熱過程更傾向于將原子推向其它位置。我們的目標是通過快速的電子反饋技術(shù)來抑制這種運動,使用回復力抵消這種逃逸運動。其基本原理如圖3所示。運動的不可預測性使得針對它的反應必須快速,但是系統(tǒng)的量子特性限制了信息量的提取。因此,我們必須在100ns內(nèi),快速執(zhí)行基于單個光子探測決策過程。我們展示的反饋方案[1,2]在這方面做得非常好。

圖1. 用于研究光與物質(zhì)基本相互作用的激光系統(tǒng)的一部分。系統(tǒng)包括多種透鏡,鏡面,以及光學模塊。

圖2. 用于單個原子和光子實驗的光學諧振腔(紅色)

圖3. a)一個光子探測器監(jiān)測原子的位置。 NI FlexRIO FPGA處理信號并且控制光纖勢能。 b)當原子向中心移動,勢能降低,反之亦然,從而引起原子失去動能。

  解決這一棘手任務的關(guān)鍵電子元件是NIPXI-7954RNIFlexRIOFPGA模塊,結(jié)合NI6581高速數(shù)字輸入輸出適配器模塊。使用適配器模塊的主要意圖是通過緩沖暴露的FPGA引腳的數(shù)字輸入與輸出,防止損壞。NIFlexRIO模塊被安裝在NIPXIe-1075機箱上,它具有NIPXIe-8130集成主機控制器。FPGAs是特殊的可重配置的集成電路,因此它們可以達到由硬件實現(xiàn)的高性能,同時在整個設(shè)計過程中可以實現(xiàn)很高程度的通用性。這一點,連同它們固有的并行性,可以提供快速與確定性的執(zhí)行過程,從而使它們在科學研究與工業(yè)生產(chǎn)中成為廣泛而有力的工具。NIFlexRIO模塊具有兩個主要優(yōu)勢。首先,它允許通過LabVIEWFPGA模塊快捷地為FPGA編程,我們可以使用這種圖形化的設(shè)計語言來設(shè)計高層的FPGA電路,同時如果有必要,它也集成了常用的,底層的VHDL代碼。其次,F(xiàn)lexRIO模塊直接將FPGA引腳展現(xiàn)給用戶,能夠?qū)崿F(xiàn)高度定制的I/O。因此,它允許定制的,高性能硬件的創(chuàng)建。在我們的應用中,我們開發(fā)了一套定制的時域數(shù)字轉(zhuǎn)換器,它能夠以一個納秒的分辨率對多個數(shù)字通路進行采樣,處理實時數(shù)據(jù),運用反饋算法,并向用戶輸出重要的信息。

  具有1ns分辨率與64位動態(tài)范圍的四通道時域數(shù)字轉(zhuǎn)換器

  工作在很低的光強下,要求使用的設(shè)備能夠探測單個光子。這些設(shè)備,稱為單光子計數(shù)模塊(SPCM),是基于雪崩光電二極管制造的,并能在探測到單個光子的時候發(fā)射數(shù)字電子脈沖(如圖4所示)。我們使用由美國珀金埃爾默(PerkinElmer®)公司制造的設(shè)備(AQR-14)。脈沖的上升沿能夠以350皮秒的精確度表示出光子的到達時間。對于我們的應用來說,1ns的分辨率剛好需要FPGA對每個連接到SPCM的數(shù)字通路以1GHz的頻率采樣。

圖4. 通過單光子計數(shù)模塊(SPCM)監(jiān)測單光子脈沖排放。脈沖寬度約17 ns。測量輸出到50Ω。

 

  高采樣率可以通過使用XilinxVirtex-5設(shè)備內(nèi)置的數(shù)字串并轉(zhuǎn)換能力實現(xiàn),我們可以用它來把1Gbit/s的數(shù)據(jù)流轉(zhuǎn)換成8個同步的,每個125Mbits/s的數(shù)據(jù)流。每個數(shù)據(jù)流描述原始數(shù)據(jù)流的一部分,數(shù)據(jù)間的時間間隔為1ns(如圖5所示)。這項功能是通過LabVIEW中插入常用CLIP(器件級知識產(chǎn)權(quán)方案)實現(xiàn)的,從而允許集成的VHDL代碼訪問FPGA的輸入/輸出引腳。

圖5. a) “iserdes”連接指FPGA輸入口,接收1 Gbit/s數(shù)據(jù)流,輸出8個平行的125 Mbit/s的數(shù)據(jù)流。b)數(shù)據(jù)流D轉(zhuǎn)換器被分成8個分流,每個分流保持時間間隔

  每個上升沿對應于一個光子撞擊,需要至少36位動態(tài)范圍的時間標記;記錄多達一分鐘的數(shù)據(jù)集是非常有必要的,同時要避免內(nèi)部計數(shù)器的溢出。這是通過運用邊緣檢測單元實現(xiàn)的,它對每8位寬度的,由“iserdes”產(chǎn)生輸出的“串并轉(zhuǎn)換”的數(shù)據(jù)流進行掃描。無論何時探測到上升沿,一個事件標志被宣稱。一個用于表示8ns間隔中事件發(fā)生位置的,3位形式的數(shù)據(jù)另外產(chǎn)生出來。這個值與61位的計數(shù)器同步運行在125MHz的時鐘下??傆?,這能提供64位的時間標記,然后它——連同事件標志一起——被傳遞給LabVIEWFPGA。從那一刻起,LabVIEWVI負責處理剩下的部分。

  四個探測器中每一個的光子撞擊的時間標記都緩存在FIFOs。隨后,它們被分類并合并成一個常見的數(shù)據(jù)流,它也具有控制信息。在數(shù)據(jù)流經(jīng)由DMA通道進入主機PC的內(nèi)存之前,它被緩存于NIFlexRIO模塊的DRAM中??傮w而言,這種結(jié)構(gòu)允許在每個通道低于2,000個事件的情況下,實現(xiàn)每秒高達125百萬個事件的峰值計數(shù)率。此外,平均每秒1億個事件的計數(shù)率也可實現(xiàn)。這種情況可以持續(xù)大約1.6千萬個事件,這是由DDR2內(nèi)存的尺寸與速度限制造成的。最終,一個持續(xù)的25MHz的計數(shù)率被實現(xiàn),這是由PXI總線的帶寬限制所決定的。升級成NIPXIe-796xNIFlexRIO模塊將顯著地提高平均計數(shù)率,這是因為增加的PXIExpress總線速度,以及更快更大的DDR2內(nèi)存。

圖6. 將數(shù)據(jù)從自定義嵌入轉(zhuǎn)化到LabVIEW。時間標記的高與低的部分加入到一個64位無符號整數(shù),不管時間標志如何記錄,都會寫入FIFO

  請注意,盡管使用了專為處理高達200Mbit/s數(shù)據(jù)率的NI6581適配器模塊的DDCA口,只要計數(shù)率不超過100MHz,以1ns的分辨率探測上升沿仍然是可行的。適當?shù)倪\行模式已經(jīng)通過使用安捷倫的81150A脈沖信號發(fā)生器的大量測試進行了驗證。

 

  逐個光子對單個原子的反饋

  FPGA要執(zhí)行的主要任務是實時對原子軌跡進行有效控制。我們使用NIFlexRIOFPGA模塊來控制單個原子的運動,它被俘獲于光腔內(nèi)部的光學偶極阱。只需要通過探測一些光子,我們就能獲得有關(guān)阱中原子實際位置的充足信息,從而操控它的運動。在這里,F(xiàn)PGA模塊被用于記錄光子的到達時間,評估原子的軌跡,并基于這些信息改變原子的俘獲勢能。當探測到單個光子時,一個數(shù)字化的電子脈沖被光電探測器發(fā)射出來,到達時間被FPGA以1ns的分辨率在多個通路記錄。基于光子被探測到的計數(shù)率變化,F(xiàn)PGA判斷原子是否正向俘獲勢能的中心移動,或是在勢阱的外部,來決定減少或增加俘獲勢能。

  NIFlexRIO模塊將被原子散射的光子的到達時間逐個分類并歸棧。典型的歸棧時間間隔一般為幾百萬分之一秒,它涉及到曝光時間,每隔幾納秒需要校正一下。散射光子率的變化通過比較當前堆棧與之前堆棧來評估,它被延時,延時時間等于曝光時間。延時使用FIFOs實現(xiàn)。在我們的實驗中,光子通量的減少表明原子正向光腔的中部移動,而增加預示著原子正向外部移動。因為被俘獲的原子對多種不同的力都非常敏感,它的運動在規(guī)則振動的同時,又疊加了一些無序的運動。這種機制使得原子軌跡在時間尺度內(nèi)的不可預測性比它的振動頻率更大,其振動頻率一般約為5kHz。一旦原子積累的動能超過它所處勢阱的深度,它就會丟失。原子呆在勢阱的時間被認為是存儲時間。此外,對于一個被俘獲原子來說,散射光子的通量一般僅為每10µs一個光子的量級,從而使執(zhí)行有效的反饋方案非常困難,這是因為有用的信息太少。一種可行的方案需要數(shù)字化地在高低值之間改變阱的勢壘深度,取決于是否當前時間間隔內(nèi)的撞擊數(shù)量超過先前一定數(shù)值。就如同它看起來那么簡單,與沒有信號反饋回來的情況相比,它在原子的平均存儲時間方面增加了30倍。存儲時間平均1秒,最高超過7秒的結(jié)果已經(jīng)實現(xiàn),從而使這項技術(shù)完全可以與激光冷卻方案相比,它要求更為復雜的光學結(jié)構(gòu)。目前更加精密的反饋策略正在研究中。

  監(jiān)測

  除了存儲有關(guān)發(fā)射光子流的信息并反饋到系統(tǒng)中,將重要的信息顯示給實驗者也至關(guān)重要。對于最初的方案來說,這一點尤其重要。為實現(xiàn)這一目的,我們將一個快速數(shù)字模擬轉(zhuǎn)換器(DAC)與兩個視頻圖形陣列(VGA)連接器集成到FPGA。

  DAC是AD(AnalogDevices)公司的TxDAC(AD9744),它能提供210Ms/s的采樣率,同時具有14位的分辨率。在當前設(shè)計下,它運行在125MHz的時鐘頻率下,并輸出一個與探測到的光子數(shù)目成正比的電壓。DAC的數(shù)據(jù)與時鐘引腳被連接到NI6581;22Ω的電阻被串聯(lián)以減少數(shù)字DAC輸入的反射。模塊的其余引腳被用于同VGA顯示器交互。基本上每個VGA連接器含有三根信號線,以及兩根數(shù)據(jù)線。信號線傳輸紅,綠,藍顏色信息。VGA的說明書要求它們連接75Ω的電阻,并且承受0V(黑色)到0.7V(全部彩色亮度)的電壓。同步由兩個高阻TTL數(shù)據(jù)線實現(xiàn),規(guī)定了水平與垂直的回描周期。如果只有8個顏色值(3位顏色深度)是需要的,那經(jīng)由270Ω電阻連接VGA連接器信號引腳與NI6581適配器模塊(采用3.3V的配置模式)就足夠了。數(shù)據(jù)線串聯(lián)一個22Ω的電阻。我們選擇將顯示器分為兩部分:一部分顯示基于文本的信息,另一部分是圖像信息。對于文本模式來說,一套8乘以16像素的黑/白字體被載入到FPGA的一個內(nèi)分區(qū)塊RAMs中。另外一個區(qū)塊RAM存儲了符號編碼。圖形部分顯示了探測器發(fā)射的趨勢圖或反饋算法的計算;這些圖表也存儲于內(nèi)分區(qū)塊RAM。運行于108MHz像素時鐘的,1280乘以1024像素的顯示模式可以很容易地實現(xiàn)。

 

  總結(jié)

  使用NIFlexRIO,我們可以創(chuàng)建自己的高性能定制硬件。時域數(shù)字轉(zhuǎn)換器是非常強大以及功能廣泛的工具,可用于科學研究與工業(yè)生產(chǎn)的很多不同領(lǐng)域,它所能提供的優(yōu)勢超過了很多商業(yè)上可用的產(chǎn)品。FPGAs的計算能力進一步幫助我們從硬件上來實現(xiàn)時間嚴格任務的實時處理,從而使對較小系統(tǒng)執(zhí)行反饋控制成為可能,甚至于單個原子與單個光子的相互作用。

  使用LabVIEWFPGA,我們可以快速地開發(fā)FPGA編碼,這是因為它的高度概括性,同時適當?shù)丶闪薞HDLIP。此外,使用PXI平臺讓我們可以在系統(tǒng)中利用跟其它PXI儀器的觸發(fā)與同步,從而使我們可以將定制的儀器集成到更大的系統(tǒng)中去,而不必執(zhí)行整個的定制設(shè)計。

  參考文獻

  [1]A.Kubanek,M.Koch,C.Sames,A.Ourjoumtsev,P.W.H.Pinkse,K.Murr,andG.Rempe,Photon-by-photonfeedbackcontrolofasingle-atomtrajectory,Nature462,898-901(2009)

  [2]M.Koch,C.Sames,A.Kubanek,M.Apel,M.Balbach,A.Ourjoumtsev,P.W.H.Pinkse,andG.Rempe,FeedbackCoolingofaSingleNeutralAtom,Phys.Rev.Lett.105,173003(2010)

  [3]P.W.H.Pinkse,T.Fischer,P.Maunz,G.Rempe,TrappinganAtomwithSinglePhotons,Nature404,365-368(2000)

  [4]P.Maunz,T.Puppe,I.Schuster,N.Syassen,P.W.H.Pinkse,andG.Rempe,Normal-ModeSpectroscopyofaSingle-Bound-Atom–CavitySystem,Phys.Rev.Lett.94,033002(2005)

標簽:

點贊

分享到:

上一篇:空壓機變頻器控制解決方案

下一篇:微能WIN-V63矢量控制變頻器在...

中國傳動網(wǎng)版權(quán)與免責聲明:凡本網(wǎng)注明[來源:中國傳動網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國傳動網(wǎng)(www.treenowplaneincome.com)獨家所有。如需轉(zhuǎn)載請與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個人轉(zhuǎn)載使用時須注明來源“中國傳動網(wǎng)”,違反者本網(wǎng)將追究其法律責任。

本網(wǎng)轉(zhuǎn)載并注明其他來源的稿件,均來自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請保留稿件來源及作者,禁止擅自篡改,違者自負版權(quán)法律責任。

相關(guān)資訊

網(wǎng)站簡介|會員服務|聯(lián)系方式|幫助信息|版權(quán)信息|網(wǎng)站地圖|友情鏈接|法律支持|意見反饋|sitemap

中國傳動網(wǎng)-工業(yè)自動化與智能制造的全媒體“互聯(lián)網(wǎng)+”創(chuàng)新服務平臺

網(wǎng)站客服服務咨詢采購咨詢媒體合作

Chuandong.com Copyright ?2005 - 2024 ,All Rights Reserved 版權(quán)所有 粵ICP備 14004826號 | 營業(yè)執(zhí)照證書 | 不良信息舉報中心 | 粵公網(wǎng)安備 44030402000946號