技術(shù)頻道

娓娓工業(yè)
您現(xiàn)在的位置: 中國傳動網(wǎng) > 技術(shù)頻道 > 技術(shù)百科 > 耐高溫永磁電機關(guān)鍵技術(shù)分析

耐高溫永磁電機關(guān)鍵技術(shù)分析

時間:2019-10-18 14:37:16來源:網(wǎng)絡(luò)

導(dǎo)語:?在低溫至高溫的寬溫區(qū)范圍、真空等航天惡劣環(huán)境下,永磁電機電磁參數(shù)變化很大,材料發(fā)生非線性變化,電磁場、溫度場、流體場、應(yīng)力場等各個物理場之間耦合關(guān)系更加復(fù)雜,在正常環(huán)境下可以忽略的多物理場耦合關(guān)系變得不可忽略,成為關(guān)鍵的技術(shù)難題。

1、電機多物理場分析方法

在低溫至高溫的寬溫區(qū)范圍、真空等航天惡劣環(huán)境下,永磁電機電磁參數(shù)變化很大,材料發(fā)生非線性變化,電磁場、溫度場、流體場、應(yīng)力場等各個物理場之間耦合關(guān)系更加復(fù)雜,在正常環(huán)境下可以忽略的多物理場耦合關(guān)系變得不可忽略,成為關(guān)鍵的技術(shù)難題。

電機的鐵心損耗、風(fēng)摩損耗、電機溫升不但與環(huán)境溫度和壓強密切相關(guān),而且相互影響。在真空環(huán)境中,散熱條件特殊,與相毗鄰部件的形狀及表面屬性相關(guān),熱輻射與表面溫度成非線性關(guān)系。真空至高壓強的變化影響應(yīng)力和材料特性變化,使得電機的多物理場建模難度增大。因此惡劣環(huán)境下永磁電機內(nèi)各物理場耦合關(guān)系非常復(fù)雜,研究各物理量和物理場的耦合關(guān)系及其動態(tài)變化規(guī)律非常困難。

永磁電機的多物理場分析方法以數(shù)值解析法和有限元分析為主。在數(shù)值解析方面,通用的建模方法有傳統(tǒng)矩陣法、鍵合圖法、聯(lián)結(jié)法、網(wǎng)絡(luò)法等。鐘掘院士等提出了對復(fù)雜機電系統(tǒng)進行全局耦合分析及耦合并行設(shè)計的基本理論。

賀尚紅教授等提出建立復(fù)雜網(wǎng)絡(luò)拓撲結(jié)構(gòu)的建模矩陣法,并建立機、電、液傳遞矩陣統(tǒng)一模型。文獻采用廣義控制系統(tǒng)對發(fā)動機多場耦合數(shù)值仿真建立統(tǒng)一的數(shù)學(xué)模型,求解氣、熱、彈耦合的變域差分問題。介紹了多場耦合的節(jié)點映射方法,討論了場域內(nèi)載荷傳遞。

但是數(shù)值解析法在耦合建模和求解仍存在較多問題,由于假設(shè)條件和忽略因素過多,導(dǎo)致計算精度不夠。在有限元分析方面,眾多CAD/CAE軟件公司,如Ansys、Flux、SIMULIA、UGS等開發(fā)多物理場耦合計算工具,已應(yīng)用于航空聲學(xué)、磁流體力學(xué)、動態(tài)流固耦合等領(lǐng)域,電磁計算的精度和效率逐步提高。2007年英國創(chuàng)刊的《InternationalJournalofMultiPhysics》雜志每年召開多場耦合會議,重點關(guān)注數(shù)值模型、模型計算、實驗調(diào)查,其中包括電機多物理場分析。

在傳統(tǒng)多物理場耦合分析方面,采用交替迭代的方法可以有效解決弱耦合以及周期穩(wěn)態(tài)強耦合場問題,直接耦合方法則是分析暫態(tài)強耦合場問題的最佳途徑。最初的多場耦合計算是采用順序單次耦合迭代方法,計算量較少,但是由于沒有考慮多場耦合,計算精確度較差。針對單次順序耦合的不足,提出了同一模型順序耦合計算方法,省去了兩次建模的過程,但是要求多物理場的耦合模型剖分一致且合理,否則計算結(jié)果差距較大,并且計算量比較大。

同時,在分析含有外電路的直流無刷電機時,還需結(jié)合場路耦合分析,妥善處理非線性電路分析中仿真步長與計算量間的矛盾。由此可見,由于耐高溫電機內(nèi)耦合物理場多、耦合關(guān)系復(fù)雜、環(huán)境邊界復(fù)雜,現(xiàn)有的耦合場建模與解耦計算方法有待進一步改進。

2、電機材料與器件特性變化規(guī)律

常規(guī)電機所用的材料,例如永磁體、電磁線和絕緣材料等,在高溫、低溫等惡劣環(huán)境下使用時會出現(xiàn)性能下降、失效、可靠性降低等問題。另一方面,高溫環(huán)境下永磁電機材料的特性變化規(guī)律復(fù)雜,在溫度范圍近300℃時,硅鋼片的特性變化明顯,電磁線導(dǎo)電特性變化近3倍,釤鈷永磁材料特性變化30%,流體黏度特性變化可能達到10倍以上,絕緣材料的導(dǎo)電特性與介電強度特性發(fā)生變化。

耐高溫永磁電機常采用釤鈷永磁材料,釤鈷Sm2Co17永磁材料工作溫度高達350℃。當(dāng)工作溫度更高時,考慮采用鋁鎳鈷材料,其最高使用溫度可達520℃,溫度系數(shù)為-0.2%/℃,但其矯頑力低,通常小于160kA/m,在磁路設(shè)計時必須校核其去磁工作點。目前已研制出的新型稀土永磁材料,如釹鐵氮、釤鐵氮等,其磁粉的最大磁能積可達40MGOe,接近釹鐵硼磁粉的3倍,而原材料成本是釹鐵硼磁粉的1/3,但尚處于實驗室研制階段。

硅鋼片的磁化曲線和損耗特性曲線對電機的損耗計算、過載能力計算等非常關(guān)鍵;硅鋼片疊片膠粘劑的熱穩(wěn)定性對電機在高溫、高速運轉(zhuǎn)下的安全和穩(wěn)定性有著直接的影響。日本學(xué)者Takahashi等利用具有700個節(jié)點的網(wǎng)絡(luò)模型分析了具有單匝線圈的旋轉(zhuǎn)電機中定子線圈股線中的溫度分布;分析高溫膨脹引起的機械應(yīng)力對硅鋼片磁特性的影響,結(jié)果表明,隨著壓應(yīng)力的增大,硅鋼片的磁導(dǎo)率明顯下降,比總損耗顯著升高。絕緣材料的絕緣性能影響電機的安全運行、可靠性和壽命。

美國杜邦公司生產(chǎn)聚酰亞胺薄膜和聚酰亞胺膠帶,用于電機電磁線絕緣、電機槽絕緣,最高耐溫可達400℃。若電機產(chǎn)生的熱量使溫度超過了500℃,可以采用陶瓷絕緣。

高溫環(huán)境下電子器件的特性不但發(fā)生明顯變化,還會出現(xiàn)熱噪聲等特殊現(xiàn)象,例如:模擬器件的參數(shù)和線性度變化范圍大;數(shù)字電路抗干擾性變差,出現(xiàn)熱噪聲等特殊現(xiàn)象;功率器件的輸出特性發(fā)生變化,電容電阻的參數(shù)漂移明顯。

發(fā)達國家研制出耐惡劣環(huán)境的電子器件,然而因技術(shù)保密,可供查詢的文獻極少。由于材料特性和器件特性是電機與驅(qū)動控制電路設(shè)計的基礎(chǔ),在高溫、低溫等惡劣環(huán)境下,電機材料與電子器件特性的變化規(guī)律的獲取和精確模型的建立是耐高溫永磁電機的關(guān)鍵技術(shù)難題。

3、永磁電機損耗、溫升和冷卻分析

在高溫環(huán)境下,永磁電機中材料屬性發(fā)生變化,引起鐵心損耗、繞組銅損、轉(zhuǎn)子損耗均發(fā)生顯著變化。在傳熱方面,真空或電機內(nèi)部充油時傳熱方式不同,電機內(nèi)部溫度分布規(guī)律復(fù)雜;在散熱方面,航天用電機的冷卻環(huán)境和冷卻條件受到制約,很難設(shè)計水冷、風(fēng)冷等措施,導(dǎo)致其散熱困難。

當(dāng)電機工作在高溫、高速、高功率密度等極限條件下,其發(fā)熱溫升更嚴重。電機溫升過高造成永磁體出現(xiàn)不可逆失磁、漆包線絕緣層破壞甚至電機讓繞組燒毀等事故,因此,損耗與溫升的準(zhǔn)確計算是耐高溫永磁電機設(shè)計與分析的關(guān)鍵技術(shù)之一,并且電機發(fā)熱溫升也是影響電機可靠性和壽命的最主要因素。

目前,對永磁電機熱問題的研究,主要集中在對熱計算方法的研究上。熱計算方法主要有五種:公式法、等效熱路法、熱網(wǎng)格法、溫度場法和參數(shù)辨識法,其中溫度場法是目前最常用的方法。

溫度場計算中對熱源(電機損耗)的計算是基礎(chǔ)。銅耗的計算應(yīng)主要考慮繞組電阻值受外界環(huán)境(如濕度、溫度等)的影響,以及槽內(nèi)導(dǎo)體的集膚效應(yīng)等影響。而電機鐵心損耗的計算,目前較準(zhǔn)確的鐵心損耗計算方法是依據(jù)分離鐵耗模型,根據(jù)產(chǎn)生原因的不同將鐵耗分為磁滯損耗、渦流損耗和雜散損耗,考慮電機內(nèi)的旋轉(zhuǎn)磁化和交變磁化分別加以計算。

在計算中,對鐵心損耗系數(shù)及修正系數(shù)的確定至關(guān)重要。高溫環(huán)境下,電機負載大范圍變化,它不但使得電機繞組內(nèi)的電流變化影響銅耗的產(chǎn)生,還導(dǎo)致氣隙磁密波形的非正弦性從而影響鐵耗。因此對高溫環(huán)境永磁電機損耗的計算,需要綜合考慮外界環(huán)境溫度、電機極限性能及工作狀態(tài)等各方面的影響因素。

以損耗為熱源,考慮電機的傳熱散熱途徑,建立電機的溫度場,以期得到電機各點的溫度和溫升規(guī)律,通常電機溫度場模型中電機材料熱系數(shù)是恒定的量,而在高溫環(huán)境下,不但電機損耗是時變的,而且電機材料的導(dǎo)熱系數(shù)等熱參數(shù)也受環(huán)境的壓力、溫度等變化影響。

因此需要充分考慮惡劣環(huán)境的因素,采用數(shù)值計算和有限元分析相結(jié)合對永磁電機進行熱問題研究,并且通過模擬實驗環(huán)境進行測試驗證,是拓展永磁電機系統(tǒng)在高溫環(huán)境條件下安全工作的重要保證。

4、電機失效機理及壽命預(yù)估方法

高溫環(huán)境下永磁電機及電子電路的發(fā)熱更容易導(dǎo)致電機及其驅(qū)動控制器的性能下降甚至失效。在電機失效機理的研究方面,主要是對絕緣層失效和永磁體失磁的研究。由于缺乏精確的老化數(shù)學(xué)模型及絕緣失效機理定量描述困難,對電機絕緣的研究一直是電機絕緣診斷技術(shù)中的難題,目前的方法主要還是通過非破壞參量來預(yù)測剩余擊穿電壓,從而評估電機的絕緣狀態(tài)。

而永磁體失磁的主要原因在于在高溫或高低溫交替環(huán)境下渦流場引起的損耗溫升,因此研究主要集中在對渦流場的計算,通過對主絕緣性能的評估,來實現(xiàn)對電機壽命的預(yù)測。

目前,國內(nèi)對電機壽命的研究主要在于對大型電機的研究,這是因為大電機運行條件復(fù)雜、惡劣,在長期運行過程中,絕緣逐漸老化,擊穿電壓逐步下降,而對中小型電機的壽命研究較少,特別是在高溫環(huán)境下永磁電機的失效機理及壽命預(yù)估研究更少。而實際上,對于工作在極限性能狀態(tài)或耐高溫環(huán)境下的中小型電機,由于其極限應(yīng)用,永磁電機的電磁負荷設(shè)計高,電機絕緣老化速度較常規(guī)電機會加快,也存在繞組絕緣老化被擊穿失效導(dǎo)致電機燒毀等問題。

此外,通常常規(guī)電機的電磁負荷設(shè)計不是很高,而且為保證電機可靠性常延長電機的設(shè)計壽命。而耐高溫永磁電機設(shè)計是以追求電機的環(huán)境適應(yīng)性和極限應(yīng)用為目標(biāo),只有認清了電機失效機理及準(zhǔn)確預(yù)測電機壽命規(guī)律,才能在電機設(shè)計應(yīng)用中真正實現(xiàn)該目標(biāo)。因此,耐高溫永磁電機的失效機理及壽命預(yù)測研究是另一個關(guān)鍵的技術(shù)難題。

5、高低溫環(huán)境永磁電機驅(qū)動控制技術(shù)

高低溫環(huán)境下電機系統(tǒng)的器件特性和指標(biāo)變化大,電機模型與參數(shù)復(fù)雜,非線性度增加、耦合程度增加,功率器件損耗變化大,不但驅(qū)動器的損耗分析與溫升控制策略復(fù)雜,而且四象限運行控制更加重要,常規(guī)的驅(qū)動控制器設(shè)計和電機系統(tǒng)控制策略不能滿足高溫環(huán)境的要求。

常規(guī)設(shè)計的驅(qū)動控制器工作在環(huán)境溫度相對穩(wěn)定條件下,而且很少考慮質(zhì)量、體積等指標(biāo)。然而在極端工況下,環(huán)境溫度在-70~180℃的寬溫區(qū)范圍內(nèi)變化,大部分的功率器件無法在此低溫中啟動,導(dǎo)致驅(qū)動器功能失效。另外受電機系統(tǒng)總質(zhì)量限制,驅(qū)動控制器的散熱性能必然要大幅度減小,這反過來影響驅(qū)動控制器的性能及可靠性。

超高溫條件下,成熟的SPWM、SVPWM、矢量控制方法等開關(guān)損耗較大,應(yīng)用受到限制。隨著控制理論和全數(shù)字控制技術(shù)的發(fā)展,速度前饋、人工智能、模糊控制、神經(jīng)元網(wǎng)絡(luò)、滑模變結(jié)構(gòu)控制和混沌控制等各種先進算法在現(xiàn)代永磁電機伺服控制中都有了成功的應(yīng)用。

CalogeroCavallaro提出了包含鐵損的永磁同步電機動態(tài)模型,并基于該模型提出了內(nèi)置式永磁同步電機損耗最小控制算法。然而各種控制策略都有其自身難以克服的缺點,尤其是環(huán)境變化帶來的參數(shù)問題、耦合問題、損耗問題、模型復(fù)雜等,使得目前的方法都存在局限性。

對耐高溫環(huán)境電機驅(qū)動控制系統(tǒng),必須以物理場計算為基礎(chǔ),密切結(jié)合材料與器件特性的變化特點,建立電機-變流器一體化模型,進行場路耦合分析才能充分考慮環(huán)境對電機系統(tǒng)特性的影響,充分利用現(xiàn)代控制技術(shù)以及智能控制技術(shù),才能提高電機綜合控制品質(zhì)。另外,工作于惡劣環(huán)境下的永磁電機由于不易更換,處于長時間運行工況下,并且外部環(huán)境參數(shù)(包括:溫度、壓強、氣流速度和方向等)變化復(fù)雜,導(dǎo)致電機系統(tǒng)工況隨動。因此,必須研究參數(shù)攝動以及外部擾動情況下永磁電機高魯棒性驅(qū)動控制器的設(shè)計技術(shù)。


聲明:本文為轉(zhuǎn)載類文章,如涉及版權(quán)問題,請及時聯(lián)系我們刪除(QQ: 2737591964),不便之處,敬請諒解!

標(biāo)簽:

點贊

分享到:

上一篇:LED驅(qū)動器中的I2C技術(shù)

下一篇:機器人奇點是什么?他們怎么...

中國傳動網(wǎng)版權(quán)與免責(zé)聲明:凡本網(wǎng)注明[來源:中國傳動網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國傳動網(wǎng)(www.treenowplaneincome.com)獨家所有。如需轉(zhuǎn)載請與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個人轉(zhuǎn)載使用時須注明來源“中國傳動網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。

本網(wǎng)轉(zhuǎn)載并注明其他來源的稿件,均來自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請保留稿件來源及作者,禁止擅自篡改,違者自負版權(quán)法律責(zé)任。

網(wǎng)站簡介|會員服務(wù)|聯(lián)系方式|幫助信息|版權(quán)信息|網(wǎng)站地圖|友情鏈接|法律支持|意見反饋|sitemap

中國傳動網(wǎng)-工業(yè)自動化與智能制造的全媒體“互聯(lián)網(wǎng)+”創(chuàng)新服務(wù)平臺

網(wǎng)站客服服務(wù)咨詢采購咨詢媒體合作

Chuandong.com Copyright ?2005 - 2024 ,All Rights Reserved 版權(quán)所有 粵ICP備 14004826號 | 營業(yè)執(zhí)照證書 | 不良信息舉報中心 | 粵公網(wǎng)安備 44030402000946號